Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
PLoS One ; 16(11): e0257736, 2021.
Article in English | MEDLINE | ID: covidwho-1511815

ABSTRACT

Since 2016, fall armyworm (FAW) has threatened sub-Saharan 'Africa's fragile food systems and economic performance. Yet, there is limited evidence on this transboundary pest's economic and food security impacts in the region. Additionally, the health and environmental consequences of the insecticides being used to control FAW have not been studied. This paper presents evidence on the impacts of FAW on maize production, food security, and human and environmental health. We use a combination of an agroecology-based community survey and nationally representative data from an agricultural household survey to achieve our objectives. The results indicate that the pest causes an average annual loss of 36% in maize production, reducing 0.67 million tonnes of maize (0.225 million tonnes per year) between 2017 and 2019. The total economic loss is US$ 200 million, or 0.08% of the gross domestic product. The lost production could have met the per capita maize consumption of 4 million people. We also find that insecticides to control FAW have more significant toxic effects on the environment than on humans. This paper highlights governments and development partners need to invest in sustainable FAW control strategies to reduce maize production loss, improve food security, and protect human and environmental health.


Subject(s)
Agriculture/economics , Insecticide Resistance/genetics , Insecticides/pharmacology , Spodoptera/pathogenicity , Africa, Northern , Animals , Ethiopia , Humans , Insecticides/economics , Larva/genetics , Larva/parasitology , Socioeconomic Factors , Spodoptera/drug effects , Zea mays/growth & development , Zea mays/parasitology
2.
Organic Agriculture ; 2021.
Article in English | PMC | ID: covidwho-1220577

ABSTRACT

This special issue presents the outcomes from “ <italic>Designing sustainable and circular agricultural systems for the year 2100</italic> ,” the joint scientific workshop of ISOFAR, the Thünen-Institute, and INRA-Morocco, which was held from November 14 to 16, 2019 in Marrakesh, Morocco. Nineteen scientists from a broad array of background and nationalities came together with the understanding that food security globally is at risk, especially in the post-2050 timeframe. Current concepts, strategies, measures, and scientific efforts carried out by governments, NGOs, businesses, and societies do not deliver satisfying solutions for how to sustainably produce enough healthy and affordable food to support the global population. With the economic and social impact of the Covid-19 pandemic in 2020, it became even more evident that food security is a challenge. This workshop took an innovative approach to addressing the challenges of future agriculture by considering sustainable, circular agricultural systems. Participants presented research results on algae-based food, edible insects, mushrooms, novel concepts for nutrient management, bioreactor-based farming, sustainable food culture, as well as sensor- and remote-controlled automatic food production. This special issue presents the papers contributed to the workshop and the results of the discussions.

SELECTION OF CITATIONS
SEARCH DETAIL